6. Barotropic dynamics

Barotropic models do not allow the creation of new vorticity or the conversion of potential
energy, but they capture other important phenomena, like external waves and nonlinear interac-
tion, very well. They also possess a shear instability that is analogous to baroclinic shear instabil-
ity. Barotropic models are relatively simple to analyze and interpret. They were used exclusively
in the earliest days of numerical weather prediction, and global barotropic weather forecasts were
still used operationally as late as the 1980s.

6.1 Geostrophic adjustment

The high-frequency motion filtered from QG and other balanced models can be under-
stood as “geostrophic adjustment”. Consider the linearized shallow-water equations on an -
plane:
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i —fozxV —glh (6.1)
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% HODV. (6.2)
Assume disturbances of the form
u = Uexpl[i(kx+ ly—vt)], (6.3)

etc. For the existence of non-trivial solutions, we find that
v(vi-f, —gHK?) = 0, (6.4)

whereK?=k*+1% . The solution correspondinguo= 0 is in geostrophic balance. The other
solutions havév/ fo)2 =1+ L?QK2 , whereg = ./JgH/ f, , the Rossby radius of deformation.

The high-frequency solutions are called “gravity-inertia waves” or (in SW model only)
“Poincaréwaves”. In the atmosphere, these are associated with the so-called “mesoscale”, where
geostrophic adjustment takes place (confusingly, in the ocean, “mesoscale” refers to a part of the
balancedmotion).

Write L = 21/ K for wavelength. IfL » Lg , the motion takes the form of inertial oscilla-
tions,v==f,:

AV/at = —f,zxV, (6.5)

with h constant. These do not disperse energy and are therefore not effective in adjusting the flow
towards balance. If «Lg , the adjustment is in form of gravitational oscillationg;K ./gH

aV/at = —gOh, (6.6)

with dh/0t = —HO [V . Note that the conditioRo« 1 , with Ro defined as in chapter 5, does
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not imply geostrophic balance, since the time scale of linear wavessid_/ ¢ L/not , Which
is much larger. In the case of inertial waves, small Ro is actually the criterion for linearity .

After the high-frequency motion disperses, we expect, from chapter 5, that most of the
adjustment will have occurred in the flow field (as opposed to the mass field) if the length scales
are larger than the Rossby radius; at small scales, it is mainly the mass field that adjusts to the flow
field. WithH = 10" m , one finds that ;= 3500km in the atmosphere. In the ocean, the “inter-
nal” Rossby radius (with gravity effectively reduced by the relative size of density variations) is at
most 100 km .

6.2 Barotropic energetics

Multiply 6.1 byV to get an equation fdtinetic energy:

9 VI _ .

i 0" -V [T(gh); (6.7)
and 6.2 bygh/H to get an equation fquotential energy:

o rgh’

E%'E_HE = (gh)0 V. (6.8)

The terms on the rhs convert kinetic energy to potential energy or vice-versa. One can see this by
adding the two equations:

o = -0avgh), (6.9)
whereE = |V|2/2 + ghz/(ZH) , the total energy. The rhs of 6.9 is a flux convergence that inte-
grates to boundary radiation. If a region has no net radiation at its boundaries, the area integral of
E over that region is conserved and the rhs of 6.7 and 6.8 can only convert between kinetic and
potential. (The latter is more accurately called “available potential energy”; the energy associated

with the mean deptH is not available for conversion).

Alternative derivatiorfor the QG modelstart with the potential vorticity equation for the

quasi-geostrophic SW model:
2

0 2 _f_O 0_
Bt Vo N thD = 0. (6.10)
Multiply by h and manipulate to reach:
oron’®, for’n_ doh®, fon’o_, g
izt grs0= E[V * orse hdch} (6.11)

whered,/dt is the operator in 6.10. Recallidg = (g9/ fo)zxUh , we see that the energy -- in
parentheses on the lhs of 6.11 -- is the same as in 6.9 except for a constant factor and the assump-
tion of geostrophic velocity. The second part of the flux on the rhs can be interpreted using the QG
momentum equation.

In the linearized model, it is easy to show that, for a given PV distribution, the state with
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the least total energy is the one in geostrophic balance. This implies that geostrophic adjustment
alwaysremovesnergy (see problem 6.2). From 6.11, we see that the ratio of potential to kinetic
energy in a geostrophically balanced flo}s' Ey = L%/ Lé . This is consistent with previous
remarks about the “burden of change” during geostrophic adjustment.

6.3 Non-divergent barotropic model

If the flow of a homogeneous fluid is purely non-divergent in the horizontal, then the verti-
cal motion vanishes and the vorticity equation reduces to

d¢ _
T = B (6.12)

We refer to this as the “barotropic vorticity equation”. In the meteorological context, its use is
sometimes justified by considering “equivalent barotropic” flows, as follows.

Equivalent barotropic flows have the structgre= A(2) [dC , Where the angle brackets
indicate vertical averaging ardis the vertical profile. On large scales, the atmosphere often
looks like this. The QG vorticity equation is

dylq _ ow
% = —Pvg+ oz (6.13)

If we assume equivalent barotropic structure and integrate between levelswviagishes, we
get

0,0
ot
where [{ 1= Z[TIx[V L and we have used the fact thatl= 1 . The constant faafar

appears only in the quadratic term. Thus, multiplying 6.14 by this factor and defining
(* = DAZEIIE, etc., leads to

+ IV 00 CAPCIZ O+ By) = O, (6.14)

(%?D+ Vv, Bm(g,0+ By) = 0. (6.15)

This is the same as 6.12. The variables denoted by asterisks may be interpreted as the original
variables evaluated at the lew]  whéve= TA’C . This is called the “equivalent barotropic
level”. Typically, zU is near mid-troposphere. The result 6.15 depends on the very strong assump-
tion that A(2) exists (with no horizontal variation).

The PV for this barotropic model is simply"+ f . If non-divergence is stipubafei
ori, the QG approximation is not needed, since the total velocitys [ (non-divergence
takes the place of a mass-momentum balance relation). Then th& F\f is . The total energy
reduces to the kinetic energg=|V >/2  B=|V|*/2



-6.4-

6.4 Rossby Waves

As seen in chapter 5, the quasi-geostrophic SW model becomes non-divergent in the limit
L «Lg, WhereLy is the Rossby radius. The vorticity equation is then 6.12. What is the effect of
B on small-amplitude perturbations to a uniform zonal flow in this model?

To get the phase speed of such disturbances, assume a plane-wave perturbation to the
zonal flow:

Y = —Uy+ Asink(x— cf). (6.16)
Then( = —Akzsink(x— ct) . Substituting into 6.12 leads to the dispersion relation:
c=U- EZ (6.17)
k

The waves are known as barotropic “Rosshy waves”. Propagati@sig/ardrelative toU.

StationaryRossby waves are possible: is zero when the wavelength2m/ k has the

L= 2n . (6.18)

With B = 1.6x10 " m's™ andU = 25 ms" expect = 8000 km in the atmosphere. The
intrinsic Rossby-wave phase speed becomes comparable to the gravity-wave phase speed when
K® = B/ +gH. For./gH = 100 ms', the corresponding wavelendgth is about 15,000 km.

value

6.5 Topographic3 -effect
The vorticity equation for the shallow-water model can be written
M, 3,0 = dh
hEblt + BVD (C+ f)dt’ (6.19)

whereh(x, y) is thdotal depth of the fluidSuppose that changeshirare partly due to bottom
topographyj.e, h = H+ h'—h,, whereh, is height of the topography add is the mean
depth. We can make the topographic effect resemblp the -effect by linearizing 6.19 and assum-
ing the bottom height depends onlyyThus, withh, «H and{| «|f| = f, ,

dz _ fodhy,

e _B3+ﬁd—y%/+fow/H (6.20)

(sincedh/ dt = —vdh,/ 0y ). The bottom slope simply modifigs

The linearization of bottom topography is implicit in the quasi-geostrophic model,
because the constrainf « H  is necessary to maintain order-Ro divergence.
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6.6 Divergent barotropic model

Whenf = f(y) , small-amplitude solutions of the SW equations are a mixture of gravity-
inertia waves and Rossby waves. In the case of no basic flow, the linearized SW system is

u, = fv—gh, (6.21)
v, = —fu-gh, (6.22)
hy = —H(u,+v,). (6.23)

Assume solutions of the foron = U(y)exp[ik(x—ct)] v,= V(y)exp[ik(x—ct)] , etc. Elimi-
natingh in 6.21-6.23 yields

—ike(1—gH/ U = fV—(gH/ V' . (6.24)
An obvious solution is simply =0 , witb = +./gH . From 6.21-6.22 one then deduces that

fo
U(y) = erxpg—ﬁ Edy % (6.25)

Note that|c/ f| = Lg(y) , the local Rossby radius (for waves near the equator, the appropriate
scale,L , is defined below). These solutions, known as Kelvin waves, require walls to support the
exponential structure. This in turn constrains the sign of the phase speed. In the NH, the waves
propagate with the wall on the right (clockwise around an island).

For all other solutions, we eliminate  to reach

d’V K =f> 2 PO, _

dy2+D o C%\/ . (6.26)
Make the mid-latitudgd -plane approximation by repladﬁg vﬁ@h and tgking  constant.
ThenV = Vyexp(ily) and 6.26 becomes a cubic equatiorcfor in terrks of | and . The first
two eigenvalues are

Cor = JgH(L +12/K2) + £2/K2. (6.27)

These “gravity-inertia” wave phase speeds are the same as the high-frequency solutions of 6.4,
sincec = v/k . The third eigenvalue is
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Cr=—-P/LK +I"+ t5/(gH)], (6.28)

which is the same as 6.17, except for an extra term in the denominator due to horlzontal diver-
gence. The approximations in 6.27 and 6.28 are based on the assumptigg ithatB/k . That
is, the Rossby modes are well separated from the gravity modes.

Now make theequatorial 3 -plane approximation by replacin‘ﬁ Wi[ﬁy2 in 6.26.
Then solutions with/ #0 take the form

V = H(8)exp(-€%/2), (6.29)

where = y/Lg , withLg = A/(g H)l/2 /B ,andH, is the Hermite polynomial of the -th order:
Ho=1,H; = 2§ ,H, = 48°-2,....The frequency equation is

ck _i2 B_2n+1

oH —c < o n=012... (6.30)
The first two solutions are
CGE=1J9H%+ 2;2:215, (6.31)
corresponding to eastward and westward propaga?ing equatorial gravity waves. The third is
'“_B/E( 2n+1D (6.32)

corresponding to (westward-propagating) equatorlal Rossby waves. In comparison to 6.27 and
6.28, the meridional wavenumber has been replacedby+ 1/ L . The meridional variation
6.29 can be characterized as a damped oscillatigrwiith more or less structure dependingrn

Equatorial Kelvin waves haw¢ = 0  amdl = erxp(—%yz/ Lé) , consistent with 6.25.
They propagate only one way, towards the east, evith ./gH

6.7 Dispersion and reflection of Rossby waves

The dispersion relation 6.28 for Rossby waves in the quasi-geostrophic SW model can be
written:

v=BK (6.33)
k +17+ LR
For real wavenumbets ahd |, the frequency lies in the raigg/2<v <0 . For a given
vV = —v, in this range, wavenumbers satisfying 6.33 lie on a circle in(ihe) plane centered at

k = B/(2v,) andl = 0 .
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9
Kk
Cq
: k
B/ (2v,)
Phase
Wave energy moves accordinglp = —c, [IIE , whegk, |) is the group velocity:
oV,  0v.
Cq = a—kx 3 V. (6.34)

Think of the above graph as though the coordinates were physical distance, kothiak + | { ,
parallel to the direction of phase propagation in physical space (diagram at right). Then the group
velocity may be written

2V0 "l:
a( 55 5C (6.35)
The vector in parentheses is |nd|cated in the left-hand diagram % hlglled ) Notice that it has the
same amplitude for all wavenumbers. The rectified enelgly (KTst+ LR )(A /4) , Where is
the amplitude of the streamfunction. Hence, in view of 6.33 and 6.35,
- Y0 __P ol
c,[E0= A g 2VoX[’ (6.36)

showing that the amplitude of the energy flux depends only on the amplitude of the streamfunc-
tion and the frequency.

Reflections of Rossby waves at a western wall preservevboth | and . This constraint
together with the direction of energy propagation determines the zonal wavenumber for the inci-
dent and reflected waves. From the diagram, one can see that the incident wave, with westward
group velocity, has the shorter and larger scale. At a southern or northerk wall, is preserved
and the scales are the same. For the energy, the angle of incidence always equals the angle of
reflection.

6.8 Pseudomomentum

Instead of3 , we now use a meridionally varyrmetative vorticity in the basic state. Con-
sider a purely zonal flom = U(y) . A small perturbation (denoted by primes) satisfies
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Eﬁ i I = Id_U I_(M
[b_t+ Uax = -V dy+fv % (6.37)
so that the perturbation enery  is governed by
% + Uaix% = - u’v’da%/ + (flux convergencg. (6.38)

The conversion term on the rhs is due to eddy momentum flux (“Reynolds stress”) in the presence
of mean shear. The perturbation energy grows when the flux is “downgradient” (towards smaller
values ofU). The flux direction is recognizable in the tilt of the eddy phase lines, since

Py, = dx u’?, (6.39)
By defining the meridional displacememt  such tdqt/dt =V , we notice that the momentum
flux may also be written
du o
uv = gt Yax %m (6.40)
Then from 6.38 and 6.40,
P,y g _nrdurf]
Ot + UGXHE 5 DdyD} = (flux convergencg. (6.41)

As the eddy energy grows in the presence of shear, so does the mean squared displacement of the
fluid particles.

The eddy vorticity equation is

W, 00 - %
¥ + Uax dy (6.42)
whence the eddy “enstrophy” equation is
NPT An S z
Ot Ua 7 = Z (6.43)
The nonlinear zonal momentum equation may be wrltten
U = fv—(uu),—(uv), —py. (6.44)
The zonal average of thisig = —(IW)y . Upon zonally averaging 6.43 as well, we find that
o0 ¢? O
[0+ 0= 0. (6.45)
otg  2dZ/dyd

'Il'he second term in parentheses is a quadratic measure of the disturbance, equivalent to

Al dZ/dy Essentially because of 6.45, it is known aggdeudomomentunthe result shows
concisely that wherever the eddy field is growing (for whatever reason), maxima and minima of
are flattened out over tim@ ( has a maximum/minimum wtérealy is positive/negative). Eq.
6.45 also follows from Stokes’ Theorem, as applied to the regions on each side of a latitude circle
from which particles are displaced meridionally by a wave.
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6.9 Barotropic shear waves

Normal modes are easy to obtain for piecewise-linear basic wind profiles. The vorticity is
constant in each of a finite number of layers. At the interfaces, the vorticity and/or wind may be
discontinuous. Smooth wind profiles may be usefully approximated by piecewise linear ones as
long as one is not specifically interested in “critical layers”, witere c

The simplest case is

oy, y=0
0=y v20 (6.46)
[€1y, y<O
with {1 andZ, both constant. As seen below, the wind is continuoyis=a® . Assume a distur-
a(y)

y=20

bance of the formp = ((y)exp[ik(x—ct)] . Then the barotropic vorticity equation 6.12 implies
0 20, ~dt
-5k +- 4 g = L (6.47)
O dy“O dy

Off the interface ay = 0 , the rhs vanishes. Solutions within the two layers are therefore either
¢ = ad(y—yY,) with c = u(y,) (“continuous spectrum”) ap = aexp(xky) (“discrete spec-
trum”). In the second case, we reject the outwardly growing solutions in each region and write

- [exp(-ky), y=0

=0 (6.48)
Eﬁlexp( ky)1 y <0
for our eigenmode.
Two independent matching conditions are requireg at0 . The appropriate quantities
to match are particle displacement and pressure. The formerigy/ (0 — ) , Which requires

continuity of the streamfunction when is continuous. ¥neomentum equation directly
implies
D e du
p = (U—C)wy+5‘f—d—y%p, (6.49)
wherep' isthe pressure perturbation. The second matching condition is, therefore, that the rhs of

6.49 should be continuous. Note that sihce @nd are continuous, the Coriolis force is irrele-
vant.

Application of the matching conditions to 6.48 yiels= a, and



c =yl (6.50)

sincedt/ dy = —{ . We see that all normal modes are neutral ( is real). Disturbances of this type
are known as “edge waves”. Compare 6.50 to the Rossby-wave dispersion relation for a one-
dimensional disturbance in the absence of shear:u, — 3/ k?

Growing normal modes are possible if another piece is added to the profile. Consider the

flow
E U, y=>L
U=p0Uy/L —-L<sys<L (6.51)
E—U, y<-L,

known as a shear-layer profile (see diagram below). Eigenmodes from the discrete spectrum are of
the form

5 a,exp(-ky), yzL

¢ = [ byexp(ky) +b,exp(-ky), -L<y<L (6.52)
[l
0 a,exp(ky), ys-L.

Since 6.51 is continuous, we again requjre  to match across each of the two inteyfaced,

U
. »— — — y =
a(y)
L L o y e
-U
Continuity of pressure in the same places then leads to
& = KI(1-K) —exp(-2K)], (6.53)

with & = ¢/U andk =2kL . Fork <1.28 (the short-wave “cutoff”), we find tigt<0 imply-
ing growing or damping solutions and no propagation relative to the flgw=atO . Shorter waves
than this are neutral, wit.‘,l2 -1 inthelimit— « . The long-wave limit» O , corresponds

to a basic state with a single vortex “sheetyat 0 . Rayleigh (1894) solved this case directly to
find thaté” = —1 , which can be confirmed from 6.53 using a Taylor-series expansion of the
exponential.

For short waved,a,/ a1)2 =(1+¢&)/(1-&) ,where the rhsis real and positive. Hence
there is no tilt to the neutral waves. Their amplitude becomes concentrated at whichever interface
hast = c . However, for the long waves, we f(raag/al)2 =-1 , implying a meridional tilt. The
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tilt of the growing modes is against the shear, as required by 6.38.

6.10 Necessary conditions for instability

The existence or non-existence of growing disturbances in a given zonal flow can be antic-
ipated from general considerations. Start with the 6.47, multiply*$(t — c) and integrate
overy to reach

TR LI P 1 i 4
IEl-k [~ + Y —ZUJDdy = — U—Cm—y%dy (6.54)
Upon integrating by parts on the |hs and assurdlpgdy 0 at infinity, we get
IB( P> + dLU‘ Edy J’l (u c +ic;) ngy, (6.55)

where we have also writtem= ¢, +ic; for the complex phase speed.

*Rayleigh-Kuo Theorem:

The imaginary part of this relation is

1§ dg
0=cg —dy. (6.56)
. , Ji—e jo-g?
The quantity§)|°/|u—d” = [q]® is positive definite. It follows that for unstable modgs @ )

to exist, the vorticity gradierd{/dy must have both signs within the flow. This result is known

as the Rayleigh-Kuo theorem.

For smooth profiles, a S|gn changedd/dy  implies that the velocity profile halan-
tion point that is dZ/dy = —d u/df = 0 somewhere. Accordingly, instabilities in this type of
flow are know as “inflectional” instabilities. Notice that the sign change guarantees the existence
of at least one pair of “counter-propagating” neutral modes (in the short-wave limit), since the
phase speed of neutral waves is proportionati€/ dy cf. 6(50).

*Fjortoft's Theorem:

The real part of 6.55 is

lhs = II B E} de (6.57)

where we have used 6.56 withz0 . Slnce the lhs is positive definite, 6.57 implies that the veloc-
ity 0 must be positively correlated with the vorticity gradient. This conclusion -- known as
Fjortoft's Theorem -- implies that  is negatively correlated with the neutral phase speed associ-
ated with the local vorticity gradient. One can understand inflectional instabilities as a phase lock-
ing and constructive interference between a pair of counter-propagating edge waves. Fjortoft's
Theorem implies that, for instability, the counter-propagation must be resisted by the mean shear.
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Problems

6.1 Derive the energy principle for the nonlinear shallow-water model, Eqgs. 5.1-5.3, in
a) Lagrangian formdE,/dt = -0 [F, ;and

b) Eulerian formoE,/ot = -0 [F, .

6.2 Linearize thé-plane shallow-water system assuming no basic flow. Suppose that a
localized initial disturbance is given in terms of its Fourier components as:

(W, @) = [[( B, Pa)e " P ckedl,
wherey is the streamfunction agpd is the geopotential.
a) Obtain the geopotential field at the completion of geostrophic adjustment.

b) Show that the change in total energy during the adjustment is always negative (or zero).
Neglect any initial divergence.

Note: it is sufficient to work with a single Fourier component. Characterize all results in
terms of the scaleg = ./gH/ f,

6.3 Consider amxisymmetridoarotropic shear flow specified by
RQ, r<R
(=0
00, r>R
for constant2 an® . The tangential velocity is continuous. Perturb the boundary of the circular
region of constant vorticity with a sinusoidal disturbance. Find the phase speed of the resulting

edge wave in terms of its azimuthal wavenumber. Show how this result reduces to the dispersion
relation 6.50 as the wavenumber increases.

6.4 Steady solutions of the barotropic vorticity equation linearized about a constant zonal
flow u = U and variable bottom topography= h,(x,y) ,inthe presence of a linear drag, sat-

isfy
a I fo — I !
wherer is a positive constant.

a) Solve for the “Green’s function” solution correspondingjo= hyd(x)cos(ly) . This
solution decays away from the topographic source in both the positive and neghtaations.
Write the solution in closed form for non-zero but “smalllWherever necessary, assume that
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is sufficiently small to simplify the algebra.) Graph the meridional flow perturbatioxy y = 0)
Assume thaD < U < B/I2 an@ >0

b) Relate the damping distancex» 0 to the zonal group velagity and damping time
T = 1/r. Is there a similar interpretation of the upstream damping scale?



